## SHORT COMMUNICATIONS

Table 3. Polymorphism of SrB<sub>2</sub>O<sub>4</sub> and CaB<sub>2</sub>O<sub>4</sub>

|       | Approximate range of stability* |            | Density (g.cm <sup>-3</sup> )   |                                 |              | Lattice parameters (Å)                |                                       |
|-------|---------------------------------|------------|---------------------------------|---------------------------------|--------------|---------------------------------------|---------------------------------------|
| Fhase | $SrB_2O_4$                      | $CaB_2O_4$ | SrB <sub>2</sub> O <sub>4</sub> | CaB <sub>2</sub> O <sub>4</sub> | Symmetry     | $SrB_2O_4$                            | CaB <sub>2</sub> O <sub>4</sub>       |
| I     | 0–8 kbar                        | 0–12 kbar  | 3.33                            | 2.70                            | Orthorhombic | a = 6.589<br>b = 12.018<br>c = 4.337  | a = 6.214 $b = 11.604$ $c = 4.285$    |
| II    | -                               | 12–15 kbar | -                               | 2.89                            | Orthorhombic |                                       | a = 8.369<br>b = 13.816<br>c = 5.007  |
| III   | 8–15 kbar                       | 15–25 kbar | 3.77                            | 3.05                            | Orthorhombic | a = 12.426<br>b = 6.418<br>c = 11.412 | a = 11.380<br>b = 6.382<br>c = 11.304 |
| IV    | 15–40 kbar                      | 25–40 kbar | 4.38                            | 3.43                            | Cubic        | <i>a</i> = 9·222                      | <i>a</i> = 9.008                      |

\* Temperature =  $600 \degree C$  for SrB<sub>2</sub>O<sub>4</sub> and  $900 \degree C$  for CaB<sub>2</sub>O<sub>4</sub>.

## Discussion

For ease of comparison between the  $SrB_2O_4$  and  $CaB_2O_4$ polymorphic series, crystal data and pressure ranges of stability are given in Table 3, and a plot of densities *versus* fraction of tetrahedral boron can be found in Fig.1. It can be seen from Table 3 as well as from Fig.1 that the behavior of  $SrB_2O_4$  under pressure is very similar to that of  $CaB_2O_4$ .

One notable difference in the two polymorphic series is that an expected phase of SrB<sub>2</sub>O<sub>4</sub> is missing, namely, SrB<sub>2</sub>O<sub>4</sub>(II). It could be predicted from the data in Table 3 that this phase should exist at 6-8 kbar and 600°C. By further extrapolation of densities (see Fig.1) and analogy to CaB<sub>2</sub>O<sub>4</sub>(II) (Zachariasen, 1967) one would expect this modification to be orthorhombic with a density of 3.6 g.cm<sup>-3</sup>, a unit-cell volume of 650 Å<sup>3</sup>, and very roughly, lattice parameters a=8.9, b=14.3, and c=5.1 Å. However, after considerable experimentation not a trace of SrB<sub>2</sub>O<sub>4</sub>(II) could be detected in any of the X-ray powder films of the high pressure samples. It should be noted that CaB<sub>2</sub>O<sub>4</sub>(II) was never obtained in the pure state from high pressure experiments at these laboratories. Instead, CaB<sub>2</sub>O<sub>4</sub>(II) was always found as a mixture with CaB<sub>2</sub>O<sub>4</sub>(I) or CaB<sub>2</sub>O<sub>4</sub>(III). It seems reasonable to expect the pressure range of stability for SrB<sub>2</sub>O<sub>4</sub>(II) to be narrower than CaB<sub>2</sub>O<sub>4</sub>(II). From Table

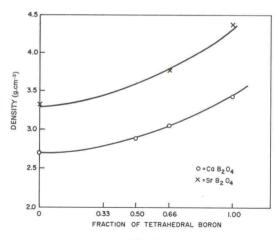



Fig. 1.

3 and from the known coordination changes for  $CaB_2O_4$ the implication is that the energy associated with the transition  $I \rightarrow II$  should be about the same for both compounds since only the boron coordination is changing. However, for the transition II  $\rightarrow$  III both cation coordinations are increasing and the energy required for this transition should be less for SrB<sub>2</sub>O<sub>4</sub> than for CaB<sub>2</sub>O<sub>4</sub>.

In general it can be seen from Table 3 that considerably less energy is required, for each of the respective transitions, for  $SrB_2O_4$  than for  $CaB_2O_4$ . Less energy is necessary to increase the strontium coordination than the calcium coordination since Sr is larger than Ca in ionic radius and is more easily accomodated in a larger lattice site. One would expect even lower energies for similar transitions for  $BaB_2O_4$ . However, preliminary experiments with  $BaB_2O_4$  show that high pressure phases of this compound are not isostructural with any of the  $SrB_2O_4$  phases.

Finally, a comparison of lattice parameters between isostructural compounds in Table 3 shows that for phase III a unique distortion of the unit cell occurs when strontium is substituted for calcium. Whereas the lattice parameters  $a_0$  for SrB<sub>2</sub>O<sub>4</sub>(III) is 9.2% larger than the corresponding parameter of CaB<sub>2</sub>O<sub>4</sub>(III), the lattice parameters  $b_0$  and  $c_0$  are only 0.6% and 1.0% larger respectively. It is difficult to explain this unidirectional expansion without a knowledge of the structural details of SrB<sub>2</sub>O<sub>4</sub>(III). Nevertheless, it can be speculated that second-nearest neighbor interactions in CaB<sub>2</sub>O<sub>4</sub>(III) could become first-nearest neighbor interactions in SrB<sub>2</sub>O<sub>4</sub>(III).

The author would especially like to thank M. Marezio and J. P. Remeika for valuable suggestions and discussions concerning this project.

## References

- BLOCK, S., PERLOFF, A. & WEIR, C. E. (1964). Acta Cryst. 17, 314.
- KROGH-MOE, J. (1964). Acta Chem. Scand. 18, 2055.
- MAREZIO, M., REMEIKA, J. P. & DERNIER, P. D. (1969a). Acta Cryst. B25, 955.
- MAREZIO, M., REMEIKA, J. P. & DERNIER, P. D. (1969b). Acta Cryst. B25, 965.
- MUELLER, M. H., HEATON, L. & MILLER, R. T. (1960). Acta Cryst. 13, 828.
- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 44.